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A B S T R A C T
Nonlinearity has enabled energy harvesting to advance towards higher power output and broader
bandwidth in monostable, bistable, and multistable systems. However, operating in the preferable
high-energy orbit (HEO) rather than the low-energy orbit (LEO) for making such advancement
has restricted their applications. Based on a monostable nonlinear system, this paper proposes a
self-contained solution for time-sharing orbit jump and energy harvesting. The joint dynamics of
an electromechanical assembly consisting of a nonlinear energy harvester and a switched-mode
piezoelectric interface circuit for high-capability energy harvesting is studied. The proposed solution is
carried out by utilizing a cutting-edge switched-mode bidirectional energy conversion circuit (BECC),
which enables time-sharing dual functions of energy harvesting and vibration exciting. A theoretical
model is established based on impedance analysis and multiple time scales method to analyze the
stability, frequency response, and phase evolution of the autonomous and nonautonomous nonlinear
energy harvesting systems. In particular, the detailed dynamics for the orbit jumps with the vibration
exciting mode of BECC are studied. Experiments are performed to validate the full-hysteresis-range
orbit jumps with the monostable nonlinear energy harvester. The harvested power after orbit jumps
yields a nine-fold increase, compensating for the energy consumption under vibration exciting mode
quickly. The proposed solution also refrains the system from extra mechanical or electrical energy
sources for orbit jumps, which leads to the first self-contained solution for simultaneous energy
harvesting and orbit jump in nonlinear piezoelectric energy harvesting. This work enhances the
practical utility of nonlinear energy harvesting technologies toward engineering applications.

1. Introduction
Energy harvesting has been widely investigated over the

last two decades as a potential solution for powering wireless
sensor nodes in Internet of Things (IoT) applications. It
enables the system to collect and convert energy, which
opens up opportunities for self-sustaining systems [2]. Ac-
cording to application scenarios, different technologies may
target solar energy, thermal energy, or vibration energy [3].
Among them, vibration energy harvesting draws massive
attention due to its easy accessibility in the ambient environ-
ment. The most investigated electromechanical transduction
mechanisms include the piezoelectric, electromagnetic, and
electrostatic ones [4].

This paper focuses on piezoelectric energy harvesting
(PEH) as a result of its high power density and compatibility
in small-scale systems. Previous efforts have been made to
improve power output and broaden the bandwidth of energy
harvesters [5].

This paper is an extending version of [1], which was presented at
the 2019 ASME International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference. (Bao Zhao and
Jiahua Wang contributed equally to this work.)
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For one thing, mechanically, multi-resonance [6] and
frequency-self-tuning [7] structures were developed to cre-
ate a resonance condition for broadening the effective energy
harvesting bandwidth. However, their power density and
overall capability are inferior, compared with the nonlinear
mechanical design [8]. To form a nonlinear energy harvester,
attractive or repulsive forces, asymmetric geometry, and
post-buckling configuration are usually utilized [9]. The
caused nonlinearity expands the working bandwidth and
may increase the power output, owing to the hardening
or softening effects. Nevertheless, at the same time, the
consequent hysteresis creates multiple root branches where
the high-energy orbit (HEO) and the low-energy orbit (LEO)
coincide [10]. For the objective of energy harvesting, the
oscillation on HEO with a much higher power output is
preferable. The studies of orbit jump in the energy harvesting
field started by Erturk et al. [11], Sebald et al. [12], and
Masuda et al. [13] in the early 2010s by methods of external
impacts by hands, high voltage excitation with piezoelectric
actuators, and negative resistance, respectively. Since then,
different methods have been proposed for this target. The
majority of the orbit jump methods utilize the system pa-
rameter tuning or perturbation strategies to force or perturb
the oscillator out of its original LEO and seek the path to
the HEO in the phase space, including negative impedance
[14, 15], load perturbation [16], stiffness modulation [17],
buckle level modulation [18, 19]. Meanwhile, other meth-
ods enable extra energy injected into the oscillator, which
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also facilitates the orbit jumps, including energy transfer by
projectile impact [20], piezoelectric voltage excitation [21],
magnetic plucking with bistable energy harvesters [22], at-
tractor selection [23], sliding mode control methods [24, 25],
and excitation tuning [26]. These methods were analytically
and experimentally demonstrated, but these solutions are
still tough to be implemented outside the laboratory since
most of them rely on extra devices or energy sources to adjust
their states. In addition, the energy or control cost of tuning
the parameter may outweigh the overall outcome. In general,
there are two common issues for carrying out these existing
methods.

• An extra energy source, which is capable of intensive
mechanical drive output, is required.

• An intensive energy injection, if introduced at an
improper phase, may induce much negative work and
reduces the actuating efficiency.

Therefore, more controllable, self-contained, and efficient
energy injection methods for orbit jumps are still in demand
to practically enhance the nonlinear energy harvester perfor-
mance and implement the energy harvester in the field.

For another, electrically, many piezoelectric interface
circuits are proposed. The linear AC energy harvesting cir-
cuit of a pure resistive load has reactive power under some
phase ranges [27]. To better improve the power factor, more
advanced nonlinear AC-DC circuits, required by most elec-
tronic devices, were developed. The standard energy harvest-
ing circuit utilizes the rectifier and smoothing capacitor to
output a DC voltage to the load [28]. Afterward, different
charge manipulation approaches were employed to increase
the power output further. The parallel or series synchronized
switch harvesting on inductor (SSHI) circuits flips the piezo-
electric voltage at displacement extreme over an inductor.
They enlarge the harvested power by several folds [29, 30].
The synchronized electric charge extraction (SECE) circuit
enhances the power output and has a load-independent fea-
ture [31]. Combining the SSHI and SECE concepts created
the double synchronized switch harvesting circuit, which
allows control of the extraction process and increase of
voltage [32]. The synchronized triple bias-flip (S3BF) circuit
[33] is proposed to reduce the switching loss and increase the
voltage level by introducing three successive voltage bias-
flips during each voltage-flip process. Based on this circuit,
Zhao et al. [34, 35] proposed the bidirectional energy con-
version circuit (BECC) by removing the bridge rectifier. The
BECC enables the dual functions of energy harvesting and
vibration exciting by using the same circuit in a time-sharing
manner. Compared with the applications in linear energy
harvesting systems, some recent works have investigated
these interface circuits with nonlinear energy harvesters to
explore the joint dynamics [36–38]. Their results showed
that the circuit might further extend the systems’ bandwidth
and increase the power output [5]. But how to ensure a
vibration in the HEO in the inherent hysteresis range has not
been addressed. As for the S3BF circuit, its interaction with
a nonlinear energy harvester is not well-studied yet.

Although many efforts have been taken to enhance the
power output and broaden the bandwidth of energy har-
vesters, general modeling methods covering both mechan-
ical dynamics and electrically induced dynamics are quite
deficient. Besides, present orbit jumps heavily rely on extra
intensive mechanical or electrical energy sources, which
is not realistic in practical applications. This work uses
an impedance model and multiple time scales method to
investigate the joint dynamics of a monostable energy har-
vester connected with the BECC circuit. Based on the dual
functions of this circuit, this research proposes an efficient
vibration exciting strategy for orbit jumps to enhance the har-
vested power and bandwidth for nonlinear energy harvester.

This paper is organized as follows. Following the in-
troduction, the integration of the monostable energy har-
vester and BECC is presented in Section 2. The equiva-
lent impedance model and electrically induced parameters
are defined. In Section 3, the dynamics of the integrated
system are investigated. Firstly, the stability analysis of an
autonomous case is studied to reveal the effects of different
operation modes on the dynamics of the nonlinear harvester.
Next, the nonautonomous systems’ frequency response and
state-space phase evolution are performed with a multiple
time scales method. The detailed steps for orbit jump from
low-energy orbits to high-energy orbits are analyzed. Section
4 presents the experimental results for orbit jumps of the
nonlinear energy harvesting system with BECC. An en-
ergy evaluation is conducted to quantify the overall energy
consumption during orbit jumps. Section 5 discusses the
extension of this orbit jump solution further to a bistable
energy harvesting system. Finally, the conclusions are drawn
in Section 6.

2. System Overview
2.1. Nonlinear PEH System using BECC

As Fig. 1 shows, a nonlinear piezoelectric energy har-
vester is considered. The nonlinearity is introduced by the
repelling force of two opposite magnets. A monostable os-
cillator is achieved by tuning the distance between magnets.
The BECC interface circuit, to be explained in the Subsec-
tion 2.2, is connected with the piezoelectric energy harvester.
The equations of motion for the integrated system can be
represented as [27]:

{

𝑀�̈� + 𝐶�̇� +𝐾𝑥 −𝐾1𝑥 +𝐾2𝑥
3 + 𝛼𝑒𝑣𝑝 = 𝐵𝑓 cos (𝜔𝑡)

𝛼𝑒�̇� − 𝐶𝑝�̇�𝑝 − 𝑖𝑝 = 0
(1)

where 𝑀 , 𝐶 , and 𝐾 are equivalent mass, damping, and
stiffness of the cantilever beam, while 𝐾1 and 𝐾2 denote
the coefficients of the nonlinear stiffness caused by mag-
nets, respectively. 𝛼𝑒 is the force-voltage factor in the elec-
tromechanical coupling. The shaker delivers a harmonic
base excitation with an amplitude 𝐵𝑓 and frequency 𝜔.
𝐶𝑝 is the clamped capacitance of the piezoelectric patch.
The displacement of the equivalent mass is denoted by 𝑥,
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Figure 1: System overview of a nonlinear piezoelectric en-
ergy harvester with the bidirectional energy conversion circuit
(BECC).

and 𝑣𝑝 denotes the voltage of the piezoelectric element. 𝑖𝑝represents the current flowing through the interface circuit.
In the circuit,𝐶𝑏 bears dual functions of voltage bias-flip and
energy storage. An inductor 𝐿 with an equivalent series re-
sistance (ESR) 𝑟 facilitates the charge manipulation together
with the diode and MOSFET network. System parameters
are summarized in Table 1.
2.2. System Characterization

To quantify the electrically induced dynamics by BECC,
we first formulate 𝑍𝑒 the electrical equivalent impedance of
the 𝐶𝑝 and BECC combination. The current flowing through
the 𝐶𝑝 and BECC combination is indicated as follows:

𝑖ℎ (𝑡) = 𝛼𝑒�̇�(𝑡), (2)
where 𝑖ℎ is a periodic current with the possibility of higher-
order harmonics due to the presence of cubic nonlinearity in
(1). For a linear energy harvester, 𝑖ℎ only contains the funda-
mental harmonic, and voltage flips occur at current crossing
zero points (displacement extremes). While cubic nonlinear
energy harvesters span from periodic to chaotic oscillations,
these high-order harmonics and chaotic oscillations may
induce multiple voltage flips in one fundamental oscillation
cycle. To prevent these behaviors, we employ a switch rest-
ing time after each voltage flip and assume weak nonlinearity
in the system for periodic solutions. Therefore voltage 𝑣𝑝could still have a first-order resonant period, which can be
formulated with a piecewise equation as follows:

𝑣𝑝 (𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝐶𝑝 ∫

𝑡

0
𝑖ℎ(𝑡)d𝑡 − 𝑉𝑀 , 0 ≤ 𝑡 < 𝜋

𝜔
;

𝑉𝑀 − 1
𝐶𝑝 ∫

𝑡

𝜋
𝜔

𝑖ℎ(𝑡)d𝑡, 𝜋
𝜔

≤ 𝑡 < 2𝜋
𝜔

,
(3)

where 𝑉𝑀 is the final voltage after the 𝑀 th bias-flip actions
in each synchronized instant [35]. It can be expressed as a
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Figure 2: The waveform in different operation modes of BECC.
(a) Energy harvesting (EH) mode; (b) The enlarged view of a
falling edge showing the bias-flip actions; (c) Vibration exciting
(VE) mode; (d) The enlarged view of a rising edge showing the
bias-flip actions.

function of the bias voltage 𝑉𝑏 and the open-circuit voltage
𝑉𝑜𝑐 according to the equations for energy harvesting modes
and vibration exciting modes of BECC [35]. With the defini-
tion of the open-circuit voltage as the voltage accumulation
on the clamped capacitor 𝐶𝑝 during a quarter of a vibration
cycle, 𝑉𝑜𝑐 reads:

𝑉𝑜𝑐 =
1

2𝐶𝑝 ∫

𝜋
𝜔

0
𝑖ℎ(𝑡)d𝑡. (4)

In (3), 𝑉𝑀 < 0 corresponds to energy harvesting modes,
and 𝑉𝑀 > 0 corresponds to vibration exciting modes.
Different 𝑀 number indicates the bias-flip action times.
In this paper, we choose 𝑀 = 3 and realize the S3BF
energy harvesting mode and S3BF vibration exciting mode
of BECC. These two modes are simply referred to as the
energy harvesting (EH) mode and the vibration exciting
(VE) mode of BECC. Fig. 2(a) and (c) show the voltage and
current waveform under the EH and VE modes of BECC.
The switching sequence which controls different MOSFETs
in Fig. 1 is referenced in [35]. The enlarged view in Fig.
2(b) and (d) illustrate the intermediate voltages at a falling
edge and a rising edge, which are influenced by the flipping
factor 𝛾 ∈ (−1, 0) [35]. Under EH mode, the piezoelectric
voltage 𝑣𝑝 is in-phase with the oscillator velocity �̇� (also
with piezoelectric current 𝑖ℎ), which indicates the energy
flow from the mechanical structure into the interface circuit.
In contrast, the out-of-phase condition happens under VE
mode. It should be noted that 𝑣𝑝 is a piecewise and con-
tinuous function with respect to the oscillator velocity �̇�.
The piezoelectric coupling force 𝛼𝑒𝑣𝑝 is also a piecewise
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and continuous force, which does not have a high degree
of smoothness. However, here we employ the first-order
assumption to avoid the tedious expansion and focus on
weak nonlinear monostable systems. A complete solution
that addresses higher-order harmonics induced by circuits
will be discussed in future work.

By studying the magnitude and phase relation between
the fundamental harmonic of 𝑣𝑝 and 𝑖ℎ, we can formulate
the equivalent impedance of the clamped capacitor 𝐶𝑝 and
BECC combination in the frequency domain [39] as follows:

𝑍𝑒(𝑗𝜔) =
𝑉𝑝,𝑓 (𝑗𝜔)
𝐼ℎ(𝑗𝜔)

= 1
𝜔𝐶𝑝

[ 4
𝜋
(

1 − 𝑉𝑀
)

− 𝑗
]

, (5)

where 𝑉𝑝,𝑓 is the magnitude of the fundamental harmonic
of 𝑣𝑝. 𝑉𝑀 is the 𝑉𝑜𝑐 normalized final voltage after flipping.
According to the electromechanical analogy, the electrical
impedance can be represented by mechanical parameters as
follows [27]:

𝐶𝑒 = 𝛼2𝑒 Re
{

𝑍𝑒
}

𝐾𝑒 = −𝜔𝛼2𝑒 Im
{

𝑍𝑒
}

,
(6)

where 𝐶𝑒 and 𝐾𝑒 are the electrically induced damping and
stiffness. 𝐾𝑒 is a constant value since the imaginary part of
𝑍𝑒 is constant, which represents the added stiffness from 𝐶𝑝.
On the other hand, the tuning range of𝐶𝑒 depends on the load
condition of BECC determined by the intermediate voltages
[34]. The electrically induced damping range for EH mode
is given as follows:

{

𝐶𝑒 ∈ ℝ+
|

|

|

|

|

4𝛼2𝑒 (1 − 𝛾)
𝜔𝜋𝐶𝑝

≤ 𝐶𝑒 ≤
4𝛼2𝑒 (3 − 3𝛾)
𝜔𝜋𝐶𝑝(1 + 𝛾)

}

. (7)

It can be seen that under the fundamental harmonic as-
sumption, the dependence of 𝐶𝑒 on the oscillator velocity
is canceled. In EH mode, 𝐶𝑒 is positive, which indicates
that the nonlinear oscillator is damped for energy harvesting
purposes. The stored energy in the bias/storage capacitor can
be used for vibration-exciting propose. Therefore, with the
maximum bias voltage 𝑣𝑏,𝑚𝑎𝑥 = 2𝑉𝑜𝑐(1 − 𝛾)∕(1 + 𝛾) [34],
the range of 𝐶𝑒 under VE mode reads:
{

𝐶𝑒 ∈ ℝ−
|

|

|

|

|

−4𝛼2𝑒 (3𝛾
4 − 5𝛾3 + 8𝛾2 − 7𝛾 + 1)

𝜔𝜋𝐶𝑝(1 + 𝛾)2(𝛾2 − 𝛾 + 1)
≤ 𝐶𝑒 < 0

}

.

(8)
In VE mode,𝐶𝑒 is negative. Therefore, adding𝐶𝑒 to mechan-
ical damping 𝐶 reduces the total damping for higher vibra-
tion amplitudes. It could even form a gross effect of negative
damping corresponding to an actuation force, which excites
the oscillator from a quiescent state [35].

3. Time-sharing Orbit Jumps
In order to facilitate the nonlinear oscillator to reach the

HEO for more harvested energy, the main idea is to perturb

the oscillator into the basin of attractions for HEOs, regard-
less of the method used. Therefore, stability analysis and
state-space evaluation are necessary to reveal the mechanism
of orbit jumps and the influence of the proposed orbit jump
solution by the time-sharing operations of BECC.
3.1. Autonomous Case

We first analyze the stability of the nonlinear oscilla-
tor without external excitation force, which forms an au-
tonomous system with the equation of motion:

𝑀�̈�+𝐶�̇�+𝐾𝑥−𝐾1𝑥+𝐾3𝑥
3 +𝐾𝑒𝑥+𝐶𝑒�̇� = 0, (9)

where the electrically induced 𝐶𝑒 and 𝐾𝑒 can be determined
with (6) to (8). By writing (9) into state-space form, this
nonlinear oscillator can be represented as follows:

{

�̇� = 𝑦,

�̇� = −𝜔2
0𝑥 − 𝑘3𝑥

3 − 𝑐𝑦,
(10)

where 𝑦 represents the velocity of the oscillator. 𝜔2
0 = (𝐾 +

𝐾𝑒−𝐾1)∕𝑀 , 𝑘3 = 𝐾3∕𝑀 , 𝑐 = (𝐶+𝐶𝑒)∕𝑀 are the mass𝑀
normalized gross effect of linear stiffness, nonlinear cubic
stiffness, and the gross effect of linear damping, respectively.
Since 𝜔2

0 is a constant parameter above zero, this nonlinear
oscillator is a monostable nonlinear oscillator with a fixed
point 𝑥𝑝 at the origin. The linearization of the dynamics
around the fixed point can be determined by the Jacobian
matrix:

𝑱 =
[

0 1
−𝜔2

0 − 𝑘3𝑥2 −𝑐

]

. (11)

By substituting 𝑥 = 𝑥𝑝 = 0, we obtain the eigenvalues:

𝜆1,2(𝐶𝑒) = − 𝑐
2
±

√

𝑐2 − 4𝜔2
0

2
. (12)

Assuming 4𝜔2
0 > 𝑐2, the eigenvalues are a pair of complex

conjugates. The sign of their real parts is determined by
the sign of 𝑐. Therefore, the linearized dynamics around
the fixed point also depend on the sign of the real part
of the eigenvalues. When 𝑐 = 0, the two eigenvalues are
purely imaginary, indicating that a two-dimensional center
manifold will be determined around the origin. However,
different from the nonlinear stiffness 𝐾3 dependent center
manifold, which features a Hopf bifurcation with limit cycles
on one side of the origin [10]. There is no limit cycle on
either side of the bifurcation point when the damping 𝐶𝑒 is
chosen as a dependent parameter.

Fig. 3 illustrates four different phase portraits from time-
domain integration corresponding to four 𝐶𝑒 cases. 𝐶𝑒 =
0 corresponds to the original nonlinear oscillator without
BECC, whose phase portrait is a stable spiral with its origi-
nal damping 𝐶 . Under EH mode, the total damping 𝐶 + 𝐶𝑒becomes larger; therefore, the phase portrait also shows a
stable spiral but decays faster to the origin. When 𝐶𝑒 = −𝐶
for VE mode, the origin becomes a nonlinear center. This
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Figure 3: Four different phase portraits correspond to different
𝐶𝑒 with the eigenvalues depending on 𝐶𝑒.

is a special case of a degenerate Hopf bifurcation, where
the eigenvalues have purely imaginary parts. As 𝐶𝑒 further
decreases when 𝐶𝑒 < −𝐶 , the real parts of eigenvalues
become positive. This corresponds to an unstable spiral such
that a self-excited oscillator is formed to achieve higher
vibration amplitudes.
3.2. Nonautonomous Case

Besides the autonomous stability analysis, we also ex-
plore the frequency response of this nonlinear energy har-
vester under an external periodic driving force around the
primary resonance of the nonlinear oscillator. With the as-
sumptions of weak damping, nonlinear reaction force, and
weak external force, the governing equation of the nonlinear
oscillator with BECC can be written as follows:

�̈� + 𝑐�̇� + 𝜔2
0𝑥 + 𝑘3𝑥

3 = 𝑏𝑓 cos (𝜔𝑡) , (13)
where 𝑏𝑓 = 𝐵𝑓∕𝑀 is the mass normalized force amplitude,
and𝜔 is the base excitation frequency. Note that an analytical
approximation for (13) takes the following form:

𝑥(𝑡) = 𝑎 (𝑡) cos [𝜔𝑡 + 𝜑 (𝑡)] + 𝑂 (𝜀) , (14)
where 𝑎(𝑡) and 𝜑(𝑡) are slowly time-varying real-valued
amplitude and phase. This solution can be constructed with
asymptotic series through the multiple time scales method
as [40]:

𝑥 = 𝑥0(𝜏, 𝑇 ) + 𝜀𝑥1(𝜏, 𝑇 ) +⋯ , (15)
where the fast and slow time variables are defined as 𝜏 = 𝑡
and 𝑇 = 𝜀𝑡. Compared with the harmonic balance or direct
time-domain integration methods, the multiple time scales
method can not only solve transient response given fast
dynamics in a nonlinear system, but also increases the nu-
merical stability and efficiency by decomposing the system
into different time scales and integrating with different time
steps [40]. This method particularly fits the nonlinear energy
harvester and orbit jump solution proposed in this paper. The
time derivatives of (15) read:

{ d
d𝑡 =

𝜕
𝜕𝜏 + 𝜀 𝜕

𝜕𝑇 +⋯ = 𝐷0 + 𝜀𝐷1 +⋯ ,
d2
d𝑡2 = 𝐷2

0 + 2𝜀𝐷0𝐷1 + 𝜀2𝐷2
1 +⋯ .

(16)

A frequency detuning parameter 𝜎 for the external force is
given as follows:

𝜔2
0 = 𝜔2 + 𝜀𝜎. (17)

By substituting (15) into (13), one can collect the 𝜀0 and 𝜀1
items as follows:

⎧

⎪

⎨

⎪

⎩

𝐷2
0𝑥0 + 𝜔2𝑥0 =0,

𝐷2
0𝑥1 + 𝜔2𝑥1 = − 𝜎∗𝑥0 − 2𝐷0𝐷1𝑥0 − 𝑐∗𝐷0𝑥0 − 𝑘∗3𝑥

3
0

+ 𝑏∗𝑓 cos(𝜔𝜏),
(18)

where 𝜎∗ = 𝜎∕𝜀, 𝑐∗ = 𝑐∕𝜀, 𝑘∗3 = 𝑘3∕𝜀, and 𝑏∗𝑓 = 𝑏𝑓∕𝜀 are
the 𝜀-scaled parameters for nonlinear analysis.

The general solution for the first component of (15) can
be written as follows:

𝑥0 = 𝐴(𝑇 )𝑒𝑗𝜔𝜏 + �̄�(𝑇 )𝑒−𝑗𝜔𝜏 , (19)
where 𝐴 and �̄� represent complex conjugates. By substitut-
ing (19) into the second equation of (18), the result is:

𝐷2
0𝑥1 + 𝜔2𝑥1 = 𝑆𝑇 𝑒𝑗𝜔𝜏 − 𝑘∗3𝐴

3𝑒3𝑗𝜔𝜏 + 𝑐𝑐, (20)
where 𝑆𝑇 and 𝑐𝑐 represent the secular term and the complex
conjugate. On setting the source of the secular terms to zero,
it gives:

2𝑗𝜔𝐷1𝐴+ 𝜎∗𝐴+ 𝑗𝑐∗𝐴𝜔+ 3𝑘∗3𝐴
2�̄�− 1

2
𝑏∗𝑓 = 0. (21)

By defining the derivative of amplitude d𝐴∕d𝑡 = 𝜀𝐷1𝐴and introducing the polar form of 𝐴 = 𝑎𝑒𝑗𝜑∕2, (21) can be
separated into real and imaginary parts for the slow flow of
𝐴 as follows:

d𝑎
d𝑡 = −𝑎𝑐

2
−

𝑏𝑓
2𝜔

sin𝜑,

d𝜑
d𝑡 =

𝜔2
0 − 𝜔2

2𝜔
+

3𝑘3𝑎2

8𝜔
−

𝑏𝑓
2𝜔𝑎

cos𝜑.
(22)

The two derivatives describe the slow flows of the amplitude
and phase. Under a steady state, the fixed points or the
amplitudes and phase can be obtained by equating the right-
hand side to zero as follows:

𝑎𝑐
2

= −
𝑏𝑓
2𝜔

sin𝜑,

𝑎
(

𝜔2 − 𝜔2
0
)

2𝜔
−

3𝑘3𝑎3

8𝜔
= −

𝑏𝑓
2𝜔

cos𝜑.
(23)

Squaring and adding the two equations in (23) yields the fre-
quency response function of the nonlinear energy harvester:

𝑎
𝑏𝑓

= 1
√

𝑐2𝜔2 +
(

𝜔2 − 𝜔2
0 −

3
4𝑘3𝑎

2
)2

. (24)
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Alternatively, (13) can also be solved by using the har-
monic balance method [41]. The expression of the solution
has the same form as (24) with first-order harmonic assump-
tion. The steady-state displacement amplitude of the nonlin-
ear energy harvester is shown in Fig. 4. It can be seen that,
due to the cubic nonlinear stiffness, the frequency response
has a hardening effect with the presence of a hysteresis range.
The two stable fixed points from (23) and an unstable fixed
point give rise to the upper and lower branches, which forms
the hysteresis range between the two gray dash lines in Fig.
4.

In order to quantify the influence of electrically induced
damping 𝐶𝑒 on the hysteresis range of the nonlinear har-
vester, the two critical frequency 𝜔𝑢 and 𝜔𝑑 for up and down
orbit jumps can be determined by imposing the derivative
d𝜔∕d𝑎 = 0 in (24). Under the weak damping assumption
[42], the two critical frequencies read:

𝜔𝑢 = 𝜔0

⎡

⎢

⎢

⎣

1 + 1
2

(3
2

)4∕3
(

𝑘3𝑏2𝑓
𝜔6
0

)1∕3
⎤

⎥

⎥

⎦

, (25)

𝜔𝑑 =
𝜔0
√

2

⎡

⎢

⎢

⎣

1 +

(

1 +
3𝑘3𝑏2𝑓
𝜔4
0𝑐

2

)1∕2
⎤

⎥

⎥

⎦

1∕2

. (26)

It can be seen that 𝜔𝑢 does not depend on the damping
coefficient while 𝜔𝑑 does. This dependence on damping
leads to the decrease of 𝜔𝑑 from an open-circuit case to an
energy harvesting case due to a more significant gross effect
of total damping 𝑐 as shown in Fig. 4. Therefore, orbit jumps
from low-energy orbits to high-energy orbits take effect in
the hysteresis range of a nonlinear harvester under EH mode
indicated by the red shaded area in Fig. 4.

When a slowly varying parameter 𝐶𝑒 is introduced,
the frequency-domain analysis based on the steady-state
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Figure 5: Phase portrait and phase evolution under EH mode
with base excitation frequency at 7 Hz. (a) (𝑎, 𝜑) phase
portrait; (b) Displacement and velocity (𝑥, �̇�) phase evolution
over time.

assumption in (23), like harmonic balance, are no longer
applicable. Thus, in this paper, we utilize the state-space
equations in (22) to better illustrate the influence of varying
electrically induced damping 𝐶𝑒 with a periodic harmonic
excitation force. The stability of the fixed points and solution
branches of the nonlinear oscillator can be determined by the
Jacobian of the slow flows in (22) as follows:

𝑱 =

⎡

⎢

⎢

⎢

⎣

− 𝑐
2 𝑎

(

𝜔2−𝜔2
0

2𝜔 − 3𝑘3𝑎2

8𝜔

)

− 1
𝑎

(

𝜔2−𝜔2
0

2𝜔 − 9𝑘3𝑎2

8𝜔

)

− 𝑐
2

⎤

⎥

⎥

⎥

⎦

. (27)

The eigenvalues of the Jacobian can be solved as follows:

𝜆1,2 = − 𝑐
2
±

√

(

𝜎𝜀
2𝜔

−
3𝑘3𝑎2

8𝜔

)(

9𝑘3𝑎2

8𝜔
−

𝜎𝜀
2𝜔

)

, (28)

where 𝜎𝜀 = 𝜔2 − 𝜔2
0. For EH mode, the gross effect of

damping 𝑐 < 0. The stability of three branches in the
hysteresis range indicated with 𝑎1, 𝑎2, and 𝑎3 in Fig. 4 are
determined by their eigenvalues. Taking an example, where
𝜔 = 2𝜋7 (rad/s), the two stable fixed points 𝑎1 and 𝑎3 both
have a pair of complex conjugate eigenvalues with negative
real parts, which create stable spirals. Another unstable fixed
point 𝑎2 has a negative and a positive real eigenvalue, which
forms a saddle point. As shown in Fig. 5(a), this saddle point
associates a stable manifold 𝑊𝑠 and an unstable manifold
𝑊𝑢, which are tangent to the corresponding eigenvectors.
The stable manifold 𝑊𝑠 partitions the phase portrait into
two regions, which are the basins of attraction of the stable
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fixed points 𝑎1 and 𝑎3. Different initial conditions attract the
trajectories to either 𝑎1 (high-energy orbit) or 𝑎3 (low-energy
orbit).

Taking two different initial conditions indicated with
yellow stars in Fig. 5(a), on both sides of the stable manifold
𝑊𝑠, they finally rest in different energy orbits. As shown with
the time evolution of their (𝑥, �̇�) phase portraits in Fig. 5(b),
the light blue trajectory for HEO corresponds to the initial
condition lies inside the region surrounded by the stable
manifold. Therefore, orbit jumps from LEO to HEO equals
to shift and tune the (𝑎, 𝜑) phase portrait of the oscillators
such that by VE mode of BECC, they can finally be attracted
to the high-energy orbit or the 𝑎1 fixed point.

For VE mode, the two stable fixed points 𝑎1 and 𝑎3 in EH
mode become unstable if 𝑐 < 0 is satisfied. If we also assume
a small absolute value of negative 𝐶𝑒, 𝑎2 will still remain a
saddle point. The two unstable spirals and the saddle node
are enclosed by red trajectories in Fig. 6(a). We first take
the initial conditions for LEOs and carry on the orbit jump
process. Fig. 6(a) shows their phase evolution under different
circuit modes. The three steps for orbit jumps labeled with
numbers are elaborated as follows:

1 The oscillator is first attracted to the fixed point for
LEO, and the circuit is initially in EH mode to harvest
energy with a positive 𝐶𝑒. The trajectories for this step
are stable spirals. All the trajectories attracted to LEO
have the same 𝑎 and 𝜑 at steady states. The (𝑥, �̇�) time
evolution for energy harvesting at the LEO is shown
with blue curves in Fig. 6(b).

2 The circuit is switched to VE mode with negative
𝐶𝑒 for vibration exciting. The oscillator first leaves
the unstable fixed point in the (𝑎, 𝜑) phase portrait
in a reverse spiral manner. When trajectories meet
the saddle point, they will be first attracted and then

repelled by the saddle point into higher displacement
amplitudes. The (𝑥, �̇�) time evolution for vibration
exciting is shown with red curves in Fig. 6(b).

3 The circuit is switched back to EH mode. The trajec-
tories right now lie in the basin of attraction for the
HEO. Therefore, they finally rest in the HEO for more
harvested energy. The (𝑥, �̇�) time evolution in energy
harvesting at the HEO is shown with light blue curves
in Fig. 6(b).

By closely observing the (𝑥, �̇�) time evolution of orbit
jump in Fig. 6(c), the displacement envelop depicted by
the red curve under the VE mode becomes almost periodic,
which is similar to a beat. This is actually due to the phase
shift in the (𝑎, 𝜑) phase portrait. At the beginning of vi-
bration exciting, the trajectory slowly leaves the unstable
fixed point in an unstable spiral manner, during which the
displacement amplitude begins to grow. After several cycles,
the saddle point attracts and repels the trajectory with the
stable and unstable manifolds. During this period, there
exist a few cycles of increase and decrease of displacement
amplitude, which forms the beating waveform. However, the
envelope of the displacement always has an increasing trend
due to the negative damping effect. After repelled by the
saddle node, the displacement amplitude of the oscillator
is amplified and lies in the basin of attraction for the HEO.
Therefore, switching the circuit back to EH mode allows the
trajectory to be easily attracted to another stable fixed point.

Fig. 7 shows the evolution of 𝐶𝑒 with respect to time and
the basin of attractions with different initial conditions. For
the EH mode of BECC, as shown in Fig. 7(a), 𝐶𝑒 maintains
a constant positive value which corresponds to a certain load
condition for energy harvesting. For the transition from EH
to VE mode, 𝐶𝑒 turns from a positive to a negative value
starting from 6s to 10s. A smooth transition is applied to
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avoid undesired numerical instability in the simulations. It
can be seen from Fig. 7(a) that, for EH mode, the basin of
attractions for HEO is surrounded by the stable manifold𝑊𝑠.While with the phase manipulation by VE mode, the basin
of attractions for HEO is extended to all initial conditions in
Fig. 7(b). The above discussions of the basin of attractions
are based on the ideal model that the system does not have
time delays. However, in real applications, the laser vibrome-
ter and microcontroller, which form a feedback control loop,
may introduce small time delays. The time delay may affect
the behavior of a nonlinear energy harvester and its orbit
jump. Thus, it is necessary to investigate the effect of time
delay in the energy harvesting system. A delay time 𝑡𝑑 is
therefore introduced to the piezoelectric voltage 𝑣𝑝 in (3) as
follows:

𝑣𝑑𝑝 (𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝐶𝑝 ∫

𝑡

𝛽
𝜔

𝑖ℎd𝑡 − 𝑉𝑀 , 𝛽 ≤ 𝜔𝑡 < 𝜋 + 𝛽;

𝑉𝑀 − 1
𝐶𝑝 ∫

𝑡

𝜋+𝛽
𝜔

𝑖ℎd𝑡, 𝜋 + 𝛽 ≤ 𝜔𝑡 < 2𝜋 + 𝛽,

(29)
where 𝛽 = 𝜔𝑡𝑑 represents a delay phase satisfying 0 <
𝛽 < 𝜋∕2. Following the same procedures mentioned in
Subsection 2.2. The equivalent impedance of BECC with a

Table 1
System parameters

Harvester geometry:

Cantilever (mm3) 90×10×1 Material Copper
Magnet (mm3) 10×10×10 Material Neodymium
Piezoelectric patch (mm3) 56×7×0.2 Material PZT
Center-to-center distance of dipole magnets (mm): 32.3

Mechanical parameters:

𝑀 (g) 8.9 𝐶 (Ns/m) 0.011
𝐾 (N/m) 52.6 𝐾1 (N/m) 41.46
𝐾2 (kN/m3) 226.7 𝐵𝑓 (mN) 8.9

Electrical parameters:

𝛼𝑒 (mN/V) 0.127 𝛾 −0.38
𝐶𝑝 (nF) 35.31 𝐿 (mH) 47
𝑟 (Ω) 45.2 𝐶𝑏 (𝜇F) 47
𝑅𝑝 (kΩ) 870 MOSFET ZVN(P)4424

delay time reads:
𝑍𝑑

𝑒 (𝑗𝜔, 𝛽) = 4
𝜋𝜔𝐶𝑝

[

cos 𝛽
(

cos 𝛽 − 𝑉𝑀
)

+ 𝑗
(

sin 𝛽 − sin 𝛽 cos 𝛽 − 𝜋
4

)]

.
(30)

With the presence of the time delay, the absolute value of
the real part of 𝑍𝑑

𝑒 becomes smaller compared with that in
(5). Therefore, the absolute value of the electrically induced
damping 𝐶𝑒 also becomes smaller. It not only reduces the
gross effect of damping 𝑐 and harvested power but also
decreases the effect of vibration exciting in VE mode. Take
a bias voltage 𝑣𝑏 = 2𝑉𝑜𝑐 as an example. The basin of attrac-
tions corresponding to different delay times are illustrated in
Fig. 7(b) to (d). It can be seen that some initial conditions
achieved HEO from LEO with no time delay turn back
to LEO eventually in Fig. 7(c). This phenomenon is more
prominent in Fig. 7(d) when 𝑡𝑑 = 8 ms. Therefore, a larger
bias voltage is needed to increase the electrically induced
damping and achieve full-hysteresis-range orbit jumps under
the same delay time.

4. Experiment
In Fig. 4, the frequency response function of the non-

linear harvester has a hysteresis region between 6.7 Hz and
7.8 Hz. This wide span makes the nonlinear system surpass
the linear system in terms of bandwidth. However, there is
a premise for making the broadband effect. Because of the
dual roots within this hysteresis region, one in LEO and the
other in HEO, orbit jump capability is necessary to ensure
a high power output. The BECC provides a flexible control
to manipulate the energy flow between the mechanical and
electrical ends. With the help of the vibration exciting mode
provided by BECC, it is possible to realize the orbit jump
using the same switched-mode energy harvesting circuit.
This section validates this self-contained time-sharing orbit
jump and energy harvesting solution.
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harvesting and vibration exciting. (a) Energy harvesting at LEO with low output power; (b) Orbit jump with vibration exciting
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4.1. Setup
The experimental setup is illustrated in Fig. 8. A personal

computer (PC) controls the base excitation of the energy
harvester through a shaker system (APS420, SPEKTRA).
A constant base excitation inertial force 𝐵𝑓 = 8.9 mN is
applied to the clamped end of the cantilevered harvester
under a constant acceleration magnitude of 1 m/s2. A laser
Doppler vibrometer (OFV-552/5000, Polytec) monitors the
tip displacement and velocity of the oscillator. It sends the in-
formation to the PC and a microcontroller (MSP430G2553,
Texas Instrument) as an interrupt signal for synchronizing
the BECC switch controls. The piezoelectric patch is con-
nected with BECC following a bias/storage capacitor 𝐶𝑏of 47 𝜇F for both energy harvesting and vibration exciting
functions. An oscilloscope (HDO6104A, Teledyne) tracks
the operation waveform of this nonlinear energy harvesting
system. The detailed geometric, mechanical, and electrical
parameters of this monostable energy harvester are listed in
Table 1. The orbit jump setup is also explained in Fig. 8. As
the system is entrained on LEO, as shown in Fig. 8(a), the
energy harvester collects energy from the vibration source
and stores the energy in the bias/storage capacitor at a low
rate. As the bias voltage in capacitor 𝐶𝑏 reaches 30 V, The
BECC is switched to vibration exciting mode. The stored
energy is now boosted back into the mechanical structure
to amplify the mechanical vibration, as illustrated in Fig.
8(b). When the oscillator gradually reaches HEO, BECC is
switched back to energy harvesting mode. As a result, the
system stabilizes on HEO and realizes higher power output,
as shown in Fig. 8(c).
4.2. Results

With the setup and proposed working mechanism, orbit
jumps at different base excitation frequencies are carried out
experimentally. One of the experimental trials is shown in
Fig. 9. The magnitude and frequency of the sinusoidal base
excitation are 1 m/s2 and 7 Hz, respectively. The frequency
falls in the hysteresis region of the nonlinear oscillator. The

red curves note that BECC is under the vibration exciting
mode, while the blue curves represent the energy harvesting
mode. Two vertical gray planes indicate the mode-transition
instants. As we can see from the figure, in the first segment,
the system stays at LEO to collect energy at a low rate.
At 1.6 s, the vibration exciting mode of BECC is turned
on by the microcontroller on the PCB board of BECC.
The vibration-exciting actions send energy back from the
bias/storage capacitor 𝐶𝑏 to the oscillator to provoke large
oscillations. Accordingly, the oscillator vibration amplitude
grows gradually and jumps over HEO by the saddle node.
Afterward, the BECC is switched back to the energy harvest-
ing mode. The system remains on HEO and harnesses energy
at a larger power. During the vibration exciting process, the
system experiences the oscillation patterns mentioned above
in Fig. 6, as the projected displacement trajectory shows.
The gradual increase of displacement amplitude due to the
unstable spiral and the saddle node together accounts for
the success of orbit jumps. A video clip (Orbitjump.mp4)
recording the orbit jumps of the energy harvester is attached
with the paper.

In one of our previous conference papers [1], it has been
shown that the VE mode of BECC can realize orbit jumps
by utilizing the energy stored in the bias/storage capacitor.
Here we take a detailed evaluation of energy consumption
and recovery. As mentioned above, the piezoelectric voltage
is captured and shown in Fig. 10 for an orbit jump trial. The
peak voltage for the EH mode has been amplified several
times after the orbit jump. During vibration exciting, the
exciting voltage gradually decreases with voltage drop on the
bias/storage capacitor. The enlarged views show the nonlin-
ear oscillator’s detailed voltage and velocity waveform for
VE and EH modes, respectively. The out-of-phase and the
in-phase relationships between piezoelectric voltage and ve-
locity correspond to the energy flow from the electrical to the
mechanical domain and reverse directions, respectively, in
the nonlinear harvesting system. The energy flow directions
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the displacement and velocity (𝑥, �̇�) phase evolution over time.
The orbit-jump segment under VE mode is illustrated in red
within two vertical gray planes, which indicate the mode
transitions.

agree with the voltage drop and rise across𝐶𝑏 under different
operation modes.

The energy gain and loss of the bias/storage capacitor
𝐶𝑏 are studied to evaluate the energy consumption of or-
bit jumps. In the whole orbit-jumping process, the energy
is consumed in the microcontroller for switching control,
vibration excitation, and also in dissipation in parasitic re-
sistance. Neglecting the minor expenditure in the microcon-
troller [34], the energy consumption for the orbit jump can
be calculated as follows:

𝐸𝑉 𝐸 = 1
2
𝐶𝑏

(

𝑉 2
𝑏𝑓 − 𝑉 2

𝑎𝑓

)

≈ 11.2 mJ, (31)

where 𝑉𝑏𝑓 , 𝑉𝑎𝑓 represent the voltage before and after the
exciting action on 𝐶𝑏. 𝑉𝑏𝑓 is pre-charged to 29 V in this
case, and 𝑉𝑎𝑓 is measured to be 19.1 V. Given that 𝐶𝑏 = 47
𝜇F, the circuit consumes about 1.09 mW average power
for the vibration exciting propose during the orbit jump
process. It should be noted that the energy consumed from
𝐶𝑏 will be partially dissipated by the equivalent series re-
sistance of the inductive branch in the bias-flip actions.
Thus, the net injected energy from electrical to mechanical
domain is smaller than that is extracted from the storage
capacitor 𝐶𝑏. The detailed electrical performance, energy
flow analysis, and efficiency under different operation modes
were documented in [35, 39]. After orbit jumps, the energy
consumed will be charged back with a higher harvested
power on HEO. In the absence of a load, the average charging
rate of the bias/storage capacitor is regarded as the power
output. Before the orbit jumps, the harvested power is 0.011
mW. On HEO, after orbit jumps, the harvested power has
been boosted for 9.1 times to 0.1 mW. Under this rate,
the consumed energy by the vibration exciting action will
be recovered in about 2 minutes. Considering the size of
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Figure 10: Piezoelectric voltage in the experiment, which
corresponds to the orbit jump process described in Fig. 9. The
enlarged views show the experimental piezoelectric voltage in
VE mode (red) and EH mode (blue), respectively.

the transducer, there is room further to optimize the sys-
tem power output and recovery time. The independence of
external devices and the compact dual functions of high-
capability energy harvesting and vibration excitation demon-
strate the advantages of the proposed self-contained solution
for time-sharing energy harvesting and orbit jumps. Besides
the base excitation at 7 Hz, multiple experimental trials
are performed under different base excitation frequencies in
the hysteresis region. Successful orbit jumps are observed
between 6.7 Hz to 7.8 Hz, covering the entire hysteresis band
in EH-mode operation. Without utilizing extra mechanical or
electrical energy sources for vibration excitation, compared
with existing studies in literature [11, 15], the proposed self-
contained solution realizes the orbit jumps within the full
hysteresis range under EH-mode.

5. Discussions
In this paper, a monostable nonlinear system is con-

ducted by tuning the distance between the dipole mag-
nets, which expands the bandwidth and increases the output
power of the harvester. Besides, other nonlinear systems
such as bistable, tristable, and multistable types are ex-
tensively explored for similar advantages [8]. However, it
is a general case where these nonlinear systems may be
trapped in one of its multiple potential wells or randomly
transited among wells, which reduces the controllability of
orbit jumps. Attempts are carried out with a bistable energy
harvester to investigate the feasibility of the proposed orbit
jump solution regarding preceding systems. By decreasing
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Figure 11: A trial of experimental orbit jump in a bistable
nonlinear energy harvester with BECC. The curves represent
the phase evolution of the displacement and velocity pair
(𝑥, �̇�) over time. The orbit-jump segment under VE mode is
illustrated in red within two vertical gray planes, which indicate
the mode transitions.

the distance between the two repelling magnets such that
making 𝐾 − 𝐾1 < 0, the original single potential well
bifurcates into two. Under certain excitation and initial con-
ditions, the bistable harvester can present complex motions
[10].

• The interwell oscillation. In this case, the vibrator
overcomes the energy barrier of potential wells and
travels between two wells. It is referred to as the HEO
vibration.

• The intrawell oscillation. In this case, the system is
trapped in one of its potential wells.

• The chaotic motion. The oscillator randomly vibrates
without a deterministic path.

In case the system does not vibrate on HEO, the BECC
activates the VE mode to carry out an orbit jump.

In the experiments, the chaotic motion is mostly ob-
served. The system firstly vibrates chaotically under a sinu-
soidal base excitation of 5.4 Hz, as shown in Fig. 11. Then,
the oscillator is excited under VE mode for 5.9 s, whose
phase portrait is illustrated in red. Afterward, the harvester
jumps to HEO, forming the interwell oscillation. Unlike the
monostable case, the motion of the bistable oscillator under
VE mode does not share the same phase evolution as that in
the monostable case, whose phase portrait is shown in Fig.
9. The first reason is that the intrinsic chaotic motion of a
bistable oscillator makes it hard to predict and control the tra-
jectory of a nonlinear oscillator; The second is that the aperi-
odic motion violates the periodic assumption for calculating
the electrical equivalent impedance. Thus the quantitative
methods are inappropriate for orbit jumps of bistable energy
harvesters with chaotic motions. However, for those bistable
energy harvesters whose periodic motions still dominate the

dynamics, the methods proposed in this work are still valid.
As a result, the VE mode can only realize orbit jumps around
𝜔𝑢, where the energy barrier is relatively low. The success of
orbit jumps is thus considered the consequence of an abrupt
voltage stimulus by the vibration exciting of BECC under
the low energy barrier cases between LEO and HEO. It is
believed that an abrupt high voltage excitation is preferable
for orbit jumps of a chaotic system [21]. For other tristable
and multistable energy harvesters whose potential barriers
are believed to be minor [8], high-voltage stimuli would be
a constructive option. The proposed dual functions of BECC
might inspire more efficient energy injection concepts for
orbit-jump solutions with nonlinear energy harvesters.

6. Conclusion
In summary, this work integrated a nonlinear piezoelec-

tric energy harvesting with the bidirectional energy conver-
sion circuit (BECC) to realize a time-sharing orbit jump
and energy harvesting solution. Based on BECC, we first
demonstrated the dual functions of energy harvesting and vi-
bration exciting using a BECC without extra energy sources
and actuators. Then, the ranges of electrically induced pa-
rameters under different operation modes were studied with
impedance analysis. Furthermore, the stability analysis, fre-
quency response, and state-space phase evolution of the
autonomous and nonautonomous systems were performed
to analyze the influence of BECC over the dynamics of
a nonlinear oscillator. Particularly, the detailed steps for
the time-sharing orbit jump from low-energy orbit to high-
energy orbit using BECC were studied. We highlighted the
effects of the unstable spiral and saddle node within the
nonlinear system. From a practical perspective, the effect of
switch time delay on the basin of attractions has also been
discussed. Finally, experiments were carried out to validate
the feasibility and capability of the proposed orbit jump
solution over the entire hysteresis range of the nonlinear
energy harvester. The energy evaluation showed that the
system’s output power yields a nine-fold increase in the high-
energy orbit. The application in a bistable energy harvesting
system also showed the versatility of this solution. This
time-sharing orbit jump solution could facilitate the practical
applications of nonlinear energy harvesters. It provides an
effective method to attain high-capability piezoelectric en-
ergy harvesting on high-energy orbits without the need for
extra energy sources and actuators.
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